11. Bibliography#
C.M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer New York, 2016. ISBN 9781493938438. URL: https://books.google.com.br/books?id=kOXDtAEACAAJ.
C.M. Bishop and H. Bishop. Deep Learning: Foundations and Concepts. Springer International Publishing, 2023. ISBN 9783031454684. URL: https://books.google.com.br/books?id=0uTgEAAAQBAJ.
B. Chambers and M. Zaharia. Spark: The Definitive Guide: Big Data Processing Made Simple. O'Reilly Media, 2018. ISBN 9781491912300. URL: https://books.google.com.br/books?id=oitLDwAAQBAJ.
Rodrigo Fernandes de Mello and Moacir Antonelli Ponti. Machine Learning: A Practical Approach on the Statistical Learning Theory. Springer International Publishing, Cham, 2018. ISBN 978-3-319-94988-8. URL: https://doi.org/10.1007/978-3-319-94989-5, doi:10.1007/978-3-319-94989-5.
Amir Gandomi and Murtaza Haider. Beyond the hype: big data concepts, methods, and analytics. International Journal of Information Management, 35(2):137–144, 2015. URL: https://www.sciencedirect.com/science/article/pii/S0268401214001066, doi:https://doi.org/10.1016/j.ijinfomgt.2014.10.007.
Salvador García, Julián Luengo, and Francisco Herrera. Data Preprocessing in Data Mining. Volume 72 of Intelligent Systems Reference Library. Springer International Publishing, Cham, 2015. ISBN 978-3-319-10246-7. URL: https://doi.org/10.1007/978-3-319-10247-4, doi:10.1007/978-3-319-10247-4.
I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive Computation and Machine Learning series. MIT Press, 2016. ISBN 9780262035613. URL: https://books.google.com.br/books?id=Np9SDQAAQBAJ.
J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. The Morgan Kaufmann Series in Data Management Systems. Elsevier Science, 2011. ISBN 9780123814807. URL: https://shop.elsevier.com/books/data-mining-concepts-and-techniques/han/978-0-12-381479-1.
T. Hastie, R. Tibshirani, and J.H. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer series in statistics. Springer, 2009. ISBN 9780387848846. URL: https://books.google.com.br/books?id=eBSgoAEACAAJ.
E. Matthes. Python Crash Course: A Hands-On, Project-Based Introduction to Programming. No Starch Press, 2015. ISBN 9781593276034.
W. McKinney. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython. O'Reilly Media, Incorporated, 2017. ISBN 9781491957660. URL: https://books.google.com.br/books?id=2BYfvgAACAAJ.
Tom M Mitchell. Machine learning. Volume 1. McGraw-hill New York, 1997.
L. Ramalho. Fluent Python: Clear, Concise, and Effective Programming. O'Reilly Media, 2015. ISBN 9781491946251.
J. Reis and M. Housley. Fundamentals of Data Engineering. O'Reilly Media, 2022. ISBN 9781098108274. URL: https://books.google.com.br/books?id=3qd2EAAAQBAJ.
S.J. Russell, S. Russell, and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson series in artificial intelligence. Pearson, 2020. ISBN 9780134610993. URL: https://books.google.com.br/books?id=koFptAEACAAJ.
A. L. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3):210–229, 1959. doi:10.1147/rd.33.0210.
A. L. Samuel. Some studies in machine learning using the game of checkers. ii—recent progress. IBM Journal of Research and Development, 11(6):601–617, 1967. doi:10.1147/rd.116.0601.
R.S. Sutton and A.G. Barto. Reinforcement Learning, second edition: An Introduction. Adaptive Computation and Machine Learning series. MIT Press, 2018. ISBN 9780262039246. URL: https://books.google.com.br/books?id=sWV0DwAAQBAJ.
T. White. Hadoop: The Definitive Guide. O'Reilly Media, 2012. ISBN 9781449338770. URL: https://www.oreilly.com/library/view/hadoop-the-definitive/9780596521974/.
Python Software Foundation. Python 3 documentation. 2024. Accessed: 2025-07-07. URL: https://docs.python.org/3/.